Crystal and Molecular Structure of Calcium Hydrazinecarboxylate Monohydrate

BY A. BRAIBANTI, A. M. MANOTTI LANFREDI, M. A. PELLINGHELLI AND A. TIRIPICCHIO

Istituto di Chimica generale, Università di Parma, Italy

(Received 26 September 1970)

Calcium hydrazinecarboxylate monohydrate, $Ca(NH_2-NH-COO)_2$. H₂O, forms triclinic crystals, space group *P*T. The structure has been determined by means of three-dimensional photographic data. The main characteristic of the structure is that the anions both chelate one calcium cation and bridge adjacent calcium cations, thus forming chains parallel to [001]. Calcium ions alternate along the chain at 3·70 and 3·87 Å from one another. The coordination polyhedron around calcium is a distorted pentagonal bipyramid with a centred face; calcium–oxygen bonds (Ca–O_{av} = 2·44 Å) are a result of a balance between electrostatic forces and steric constrictions. The two crystallographically independent anions form pentatomic rings with Ca; part of the ring, namely –NH–COO, forms a rather rigid body whereas Ca and –NH₂ are out of the plane of the rigid portion of the molecule. Distances and angles in the anions are compared with distances and angles found in octahedral chelates of the same ligand with 3*d*transition metals. Strong hydrogen bonds are formed by H₂O within the same chain; weak hydrogen bonds hold the chains together in the structure.

Introduction

The crystal and molecular structures of several hydrazinecarboxylates have been determined in this laboratory (Braibanti, Manotti Lanfredi, Tiripicchio & Bigoli, 1970; Bigoli, Braibanti, Tiripicchio & Tiripicchio Camellini, 1970). All these compounds concern complexes of 3*d*-metals and sometimes magnesium. They present various types of octahedral coordination but all of them contain pentatomic chelate rings.

which are strictly analogous to the rings formed by α -amino acids with the same metals (Freeman, 1967). The structures of compounds of hydrazinecarboxylic acid can constitute valid substitutive examples for non-obtainable or non-crystallizable compounds of α -amino acids.

Experimental

Preparation

Crystals of the compound can be obtained by evaporation of an aqueous solution of calcium hydroxide and hydrazine treated by carbon dioxide. The crystals have a prismatic habit and decompose slowly in the air.

Crystal data

Compound: Calcium hydrazinecarboxylate monohydrate, $Ca(N'H_2-NH-COO)_2$. H_2O , F.W. 208.2. Crystal class: triclinic pinacoidal.

Unit cell (radiation Cu $K\alpha$, $\lambda = 1.5418$ Å, from rotation and Weissenberg photographs around [010]): a = 7.67 (1), b = 7.86 (1), c = 6.37 (1) Å; $\alpha = 84.02$ (45), $\beta = 72.88$ (55), $\gamma = 78.65$ (25)°. V = 359.3 Å³, Z = 2; $D_x = 1.92$, $D_m = 1.92$ g.cm⁻³; μ (Cu K α) = 72.7 cm⁻¹. Space group: $P\overline{1}(C_i(1), \text{ No. 2})$.

Intensity data

Intensities were recorded photographically on an integrating Weissenberg camera and measured by a microdensitometer. The crystal was rotated around [010] and 1113 independent reflexions out of 1358 possible were observed in layers h0l, h1l, ..., h6l.

The intensities were corrected as usual; absorption corrections were applied as for cylindrical specimens ($\mu \bar{R} = 0.49$). Atomic form factors according to Cromer & Mann (1968) have been used.

The structure, solved by Patterson and Fourier methods, has been refined by differential syntheses using anisotropic thermal parameters. The hydrogen atoms have been identified in the difference synthesis (R=10.7%) without hydrogen contributions and R=10.3% with hydrogen contributions). All the calculations have been performed on the computer, Olivetti Elea 6001/S of Centro di Calcolo Elettronico, of the University of Parma.

The results of the structure determination are summarized in Tables 1 to 4.

Discussion

The structure consists of chains parallel to [001] (Fig. 1) formed by a sequence of cations and anions. The main interatomic distances and angles in a chain are quoted in Table 5. The anions $NH_2-NH-COO^-$ not only surround the cations Ca^{2+} in a cage but also share oxygen atoms between two calcium ions and form bridges. The calcium ions alternate along the chain at distances

3.70 and 3.87 Å from one another; these distances are shorter than those found in CaCl₂.glycylglycylglycine. $3H_2O$ (Van der Helm & Willoughby, 1969).

Table	1.	Fractional atomic coordinate.
		$\times 10^4$ (with e.s.d.'s)

	x	У	Z
Ca	1193 (1)	0512 (2)	1933 (1)
O(1.1)	1280 (6)	0802 (7)	5765 (6)
C(2.1)	2532 (7)	1420 (9)	6201 (5)
N(3.1)	3729 (7)	2174 (9)	4537 (8)
N(4.1)	3775 (8)	2046 (8)	2299 (7)
O(5.1)	2758 (6)	1424 (7)	8095 (6)
O(1.2)	-1223(6)	1859 (7)	0264 (5)
C(2.2)	-1890 (7)	3455 (13)	0317 (11
N(3.2)	-1748 (8)	4360 (10)	1950 (8)
N(4.2)	-0555(9)	3561 (9)	3235 (7)
O(5.2)	-2638(7)	4321 (9)	- 1090 (8)
O(6)	3674 (6)	- 1816 (8)	2506 (7)
H(7.1)	4874	2521	4518
H(8.1)	3649	3157	1539
H(9.1)	4899	1188	1583
H(7.2)	-2406	5500	2218
H(8.2)	-1167	3650	4657
H(9.2)	0633	4311	2933
H(10)	3000	- 2583	2013
H(11)	4892	1682	2093

The polyhedron of donor atoms around calcium (Fig. 2) is not related to any polyhedra observed in compounds of the same acid with 3d-metals. It can be roughly described as a pentagonal bipyramid with a centred face and is analogous to that observed in CaCl₂.glycylglycylglycine.3H₂O. The resulting coordination number is 8, formed by six O atoms and two N atoms. One O belongs to the water molecule which therefore enters the coordination sphere of the cation. The two bond distances between calcium and nitrogen, crystallographicallyindependent, are equal(Ca-N=2.59 Å), but the bonds between calcium and oxygen range

Fig. 1. Clinographic projection of the structure of calcium hydrazinecarboxylate monohydrate, with $Ca \cdots Ca$ distances along chains parallel to [001].

from 2.37 to 2.50 Å with an average value of 2.44 Å. Apparently the calcium-oxygen bonds, both in length and arrangement, are a result of a balance between the electrostatic attraction of the cations to the anions and steric constrictions.

Table 2. Thermal parameters (Å²)

	<i>B</i> ₁₁	B ₂₂	B ₃₃	B_{12}	B ₁₃	B_{23}
Ca	1.882	1.498	0.691	-0.199	-0.675	0.140
O(1.1)	2.623	2.173	1.477	-0.766	- 0.901	0.048
C(2.1)	2.324	1.484	1.333	-0.014	-0.817	0.046
N(3.1)	3.041	2.547	1.478	-1.020	-0.801	0.448
N(4.1)	2.582	2.364	1.435	-0.374	-0.568	0.248
O(5.1)	3.156	3.247	1.421	-0.884	-1.082	0.013
O(1.2)	2.629	1.825	2.155	0.284	-1.402	-0.158
C(2.2)	2.931	1.841	2.327	-0.348	-1.191	0.470
N(3.2)	5.515	3.169	3.229	0.261	-2.452	-0.521
N(4.2)	3.546	2.176	2.317	-0.152	-1.458	0.039
O(5.2)	5.898	1.979	4.167	-0.380	- 3.669	0.804
O(6)	2.697	2.933	2.964	0.068	-1.248	−0 ·568

In the last cycle for all the atoms the average shift $|\Delta B_{ij}|_{av}$, and the maximum shift $|\Delta B_{ij}|_{max}$, were $|\Delta B_{ij}|_{av} = 0.037$, $|\Delta B_{ij}|_{max} = 0.183$.

	В		В
H(7.1)	2.50	H(8.2)	2.70
H(8.1)	2.10	H(9.2)	2.70
H(9.1)	2.20	H(10)	3.10
H(7.2)	3.50	H(11)	3.20

Table 3. Observed and calculated structure factors

Columus are $h, k, l, 10F_o$ and $10F_c$. – after F_o indicates an unobserved reflexion.

:

!

:

CALCIUM HYDRAZINECARBOXYLATE MONOHYDRATE

Table 3 (cont.)

568687778890011112222233334444555568487788900111122223333444555568778900111122223333445556878001
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
206 206 206 113 103 1 135 134 1 135 134 1 131 103 1 134 1 103 1 131 103 14 2 26 -14 2 2 57 -44 3 105 -94 4 24 -14 2 257 -44 3 105 -94 4 24 -14 2 121 121 12 5 121 121 12 5 137 -15 5 2 137 -161 113 2 137 -181 11 11 137 -182 40 4 62 60 -181 15 137 -167 72 35 35 -35 <t< td=""></t<>
333333333333333444444444444444444444444
73 -73 1391 51 -37 44 -31 102 -104 66 -67 94 -98 123 120 1629 182 167 1141 85 73 1319 9. 105 1128 1040 131 -141 280 -354 207 191 239 -274 421 394 168 -176 157 -141 280 -354 207 191 239 -274 421 394 168 -176 157 -141 157 -141 157 -141 157 -141 157 -15 158 57 158 57 158 57 159 156 -13 158 57 151 -227 229 223 145 -13 158 57 151 -27 141 -27 158 17 158 -17 159 166 173 158 173 158 157 -141 157 -141 157 -141 157 -141 157 -141 157 -141 157 -15 168 -176 158 57 169 166 147 173 168 173 167 169 166 147 173 167 169 166 147 173 167 173 167 173 -79 18- 14 194 -97 158 -37 195 -37 179 -22 116 -137 162 -17 173 -29 173 -29 173 -79 173 -29 173 -79 173 -29 173 -79 173 -29 173 -79 173 -79 173 -29 245 -57 173 -79 245 -57 246 -37 59 -37 173 -29 246 -37 59 -37 173 -29 246 -37 59 -37 173 -29 246 -37 59 -37 173 -29 246 -27 247 51 246 141 109 247 -51 246 -20 247 51 246 -21 246 -22 247 51 246 -22 247 51 246 -22 246 -22 246 -22 247 51 246 -22 247 51 246 -22 246 -22 247 51 246 -22 246 -22 247 51 246 -22 246 -24 247 51 246 -27 247 51 248 -27 248 -27 248 -27 247 51 248 -27 248
7 7 7 8 8 8 9 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 5 6 6 6 6 7 7 7 8 8 9 0 0 1 1 1 1 2 7 2 7 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9 U U I I I I I Z Z Z Z Z Z Z Z Z Z Z Z Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 249\\ 5\\ -118\\ 6\\ 7\\ 1223\\ 735\\ 0\\ 0\\ 1173\\ 1223\\ 3\\ 0\\ 0\\ 1173\\ 127\\ 3\\ 1173\\ 127\\ 127\\ 127\\ 127\\ 127\\ 127\\ 127\\ 127$
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
5 7 6 6 7 7 8 9 0 0 1 1 1 1 2 2 2 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2264

Formally the pentatomic chelate rings are maintained but, strictly speaking, each anion cannot be said either to chelate one Ca^{2+} or bridge two Ca^{2+} .

There are in the structure two independent anions (Fig. 3). The distances and angles in them are compared (Table 6) with distances and angles of a model ring taken from the compounds of transition metals. The main difference, occurring in the model ring, concerns the carboxylate group where C(2)-O(1) and C(2)-O(5) are equal for the calcium compound and different for the transition metal compounds. This clearly indicates the ionic character of the bond between carboxylate and calcium.

Altogether the structures of the two independent anions do not differ from one another although their chemical functions are not exactly the same. In fact, in the ring 1, the atoms O(1.1), O(5.1) and N(4.1) are all involved in bonds with Ca while in the ring 2, only atoms O(1.2) and N(4.2) are bound to Ca and O(5.1) forms one strong hydrogen bond (2.59 Å) with the water molecule of an adjacent polyhedron of the same chain. Even with respect to the planarity of the pentatomic ring or of part of the anion, the two independent molecules behave analogously. The analysis of the planarity (Table 7) shows how atoms O(1.1), C(2.1), N(3.1), O(5.1) lie in the same plane and atoms O(1.2), C(2.2), N(3.2), O(5.2) nearly so. These groups of atoms constitute a rigid body in each molecule. Atoms Ca and N(4.1) and, even more, atoms Ca and N(4.2) are significantly out of the plane of the rigid portion of the molecule. Here the calcium and nitrogen atoms are on the same side of each respective ring. Situations like these have been found for other compounds of hydrazinecarboxylic acid and α -amino acids (Freeman, 1967) as well cases where N(4) and the metal atom are on opposite sides of the rigid portion. It can be deduced that in these ligands the bonds Me–O(1) and N(3)–N(4) (or C'–N in α -amino acids) can be slightly, but significantly, distorted.

The distances involving hydrogen atoms are reasonable (Table 8). The positions of the hydrogen atoms are in accordance with an approximate sp^2 configuration of atoms N(3.1) and N(3.2) and a sp^3 configuration of atoms N(4.1) and N(4.2). The structure of the water molecule O(6) is not clearly defined because it forms two strong hydrogen bonds O(6) \cdots O(5.2ⁱ) = 2.59 and O(6) \cdots (5.2^v) = 2.72 Å with angle 125.8° between them. The hydrogen atoms have been found along the O \cdots O directions or nearby. It is not possible, therefore, to establish the class of this water molecule, according to Chidambaram, Sequeira & Sikka (1964). The two hydrogen bonds of the water molecule join groups of the

Table 4. Atomic peak heights (e.Å⁻³), curvatures (e.Å⁻⁵) and e.s.d.'s

	Q	- Ann	$-A_{kk}$	$-A_{ll}$	Ank	Ani	Aĸı
Ca ob	s. 50·0	537	350	633	-68	- 184	- 36
cal	c. 50·8	537	352	625	- 69	-182	- 37
O(1.1) ob	s. 13·9	129	88	145	-18	-48	-11
cal	c. 14·0	129	89	144	-17	-47	-11
C(2.1) ob	s. 10·8	112	74	147	-13	-43	-7
cal	c. 11·1	113	74	147	-13	-43	-7
N(3.1) ob	s. 10·7	101	68	104	-14	- 37	- 8
cal	c. 11·0	101	69	104	-13	- 37	-7
N(4.1) ob	s. 11.6	110	74	124	-17	-24	-6
cal	c 11.7	111	74	122	-19	-23	- 7
O(5.1) ob	s. 13·4	129	85	142	- 19	- 44	- 8
cal	c. 13·7	131	87	139	-18	-43	-7
O(1.2) ob	s. 13·8	124	87	145	-9	46	-13
cal	c. 13.9	124	86	146	-9	-45	-12
C(2.2) ob	s. 9·4	95	58	89	1	-24	4
cal	c. 9·5	95	59	89	1	-23	4
N(3.2) ob	s. 9·3	81	60	92	-7	- 38	-9
cal	c. 9·6	83	59	91	- 8	- 37	- 8
N(4.2) ob	s. 10∙6	91	67	112	-17	- 33	-9
cal	c. 10·8	92	67	111	- 18	-32	-9
O(5.2) ob	s. 11·3	93	73	107	-12	- 48	1
cal	c. 11.6	94	72	107	-13	-46	- 2
O(6) ob	s. 12·5	114	78	123	-12	- 36	- 10
cal	c. 12·8	112	78	124	-12	- 35	-10
e.s.d.	0.2	3	2	4	2	2	2
		Q				Q	
	H(7.1) obs.	1.1		H(8.2)	obs.	1.1	
	calc.	1.3			calc.	1.1	
	H(8.1) obs.	1.4		H(9.2)	obs.	1.1	
	calc.	1.2		. ,	calc.	1.1	
	H(9.1) obs.	0.8		H(10)	obs.	0.8	
	calc.	0.8			calc.	1.0	
	H(7.2) obs.	0.3		H(11)	obs.	1.0	
	calc.	0.6			calc.	1.2	

same chain. The connexions between chains are given by a weak hydrogen bond $N(4\cdot 1) \cdots O(5 \cdot 2^{v_i}) = 2.91$ Å. Other contacts are quoted in Table 9; among these is the bond $N(3.2^{vii}) \cdots O(5.1) = 3.25$ Å. Although the hydrogen atom lies along the line, the bond cannot be considered to be a hydrogen bond because the

Table 5. Main bond distances and angles (*)

$\begin{array}{l} \text{CaO(1.1)} \\ \text{CaN(4.1)} \\ \text{O(1.1)-C(2.1)} \\ \text{C(2.1)-N(3.1)} \\ \text{N(3.1)-N(4.1)} \\ \text{C(2.1)-O(5.1)} \\ \text{N(4.1)-O(1.1)} \end{array}$	2·497 (8) Å 2·588 (14) 1·266 (9) 1·352 (8) 1·430 (8) 1·269 (7) 2·700 (10)		$\begin{array}{c} O(1.1) &CaN(4.1) \\ Ca &O(1.1) - C(2.1) \\ O(1.1) &C(2.1) - N(3.1) \\ C(2.1)N(3.1) - N(4.1) \\ N(3.1) &N(4.1) - Ca \\ O(1.1)C(2.1) - O(5.1) \\ O(5.1)C(2.1) - N(3.1) \end{array}$	64·1 (1)° 123·1 (3) 118·3 (4) 121·1 (6) 112·6 (4) 125·7 (5) 115·9 (5)
$\begin{array}{l} CaO(1.2)\\ CaN(4.2)\\ O(1.2)-C(2.2)\\ C(2.2)-N(3.2)\\ N(3.2)-N(4.2)\\ C(2.2)-O(5.2)\\ N(4.2)-O(1.2) \end{array}$	2·416 (13) 2·592 (13) 1·258 (13) 1·361 (11) 1·417 (11) 1·272 (10) 2·646 (11)		$\begin{array}{l} O(1.2) &Ca &N(4.2) \\ Ca &O(1.2) & -C(2.2) \\ O(1.2) &C(2.2) & -N(3.2) \\ C(2.2) &N(3.2) & -N(4.2) \\ N(3.2) &N(4.2) & -Ca \\ O(1.2) &C(2.2) & -O(5.2) \\ O(5.2) &C(2.2) & -N(3.2) \end{array}$	63·7 (2) 123·6 (4) 118·2 (6) 118·5 (7) 112·4 (4) 125·2 (7) 116·6 (9)
$\begin{array}{c} CaO(6) \\ CaO(1.2^{i}) \\ CaO(1.1^{ii}) \\ CaO(5.1^{iii}) \end{array}$	2·449 (13) 2·437 (11) 2·373 (9) 2·486 (9)		$\begin{array}{l} O(1.1) &Ca &O(6) \\ O(6) &Ca &O(1.2^{i}) \\ O(1.2;) & -Ca &O(1.2) \\ N(4.2) & -Ca &O(1.1) \\ O(1.1^{ii}) & -Ca &O(5.1^{iii}) \\ O(1.1^{ii}) & -Ca &O(6) \\ O(1.1^{ii}) & -Ca &O(1.2^{i}) \\ O(1.1^{ii}) & -Ca &O(1.2) \\ O(1.1^{ii}) & -Ca &O(1.2) \\ O(1.1^{ii}) & -Ca &O(1.1) \\ O(5.1^{iii}) & -Ca &O(1.2) \\ O(5.1^{iii}) & -Ca &O(1.2^{i}) \\ O(5.1^{iii}) & -Ca &O(1.2) \\ O(5.1^{iii}) & -Ca &O(1$	$\begin{array}{c} 75 \cdot 0 \ (2) \\ 74 \cdot 0 \ (2) \\ 80 \cdot 6 \ (2) \\ 70 \cdot 7 \ (2) \\ 145 \cdot 4 \ (1) \\ 74 \cdot 7 \ (1) \\ 95 \cdot 8 \ (2) \\ 78 \cdot 3 \ (2) \\ 80 \cdot 8 \ (2) \\ 91 \cdot 0 \ (2) \\ 139 \cdot 6 \ (2) \\ 97 \cdot 9 \ (2) \\ 75 \cdot 3 \ (2) \\ 73 \cdot 2 \ (1) \\ 97 \cdot 4 \ (2) \end{array}$
	* Asymmetric units	i ii iv v vi vii	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 6. Comparison of distances and angles in compounds of hydrazinecarboxylic acid

	Octahedral* complexes mean		Ca	a(N'H2–NH.COO)2.H2 mean	0
Distance	đ	S_b/σ^2	$\chi^{2}_{95\%}$	đ	<i>t</i> †
O(1)-C(2) O(5)-C(2) C(2)-N(3) N(3)-N(4)	1·293 (6) Å 1·224 (6) 1·381 (7) 1·422 (7)	17·60 16·62 17·16 10·05	18.48	1·268 (5) 1·355 (6) 1·425 (6)	3·2 5·6 2·8 0·3
Angles	$\bar{\alpha}$			ā	
O(1)-C(2)-N(3) C(2)-N(3)-N(4) O(1)-C(2)-O(5) O(5)-C(2)-N(3)	116·74 (45) 119·14 (42) 124·11 (50) 118·97 (49)	17·65 18·66 20·59 20·37	18.48	18·27 (30) Å 20·00 (50) 25·53 (40) 16·06 (40)	2·6 1·3 2·2 4·5

* Weighted means have been calculated following Hamilton (1964) p. 115. The weighted mean was accepted if $\frac{Sb}{\sigma^2} \le \bar{\chi_{1\%}}$.

Values are taken from Ferrari, Braibanti, Bigliardi & Lanfredi (1965), Braibanti, Manotti Lanfredi & Tiripicchio (1967), Braibanti, Tiripicchio, Manotti Lanfredi & Camellini (1967), Braibanti, Tiripicchio, Manotti Lanfredi & Bigoli (1968), Braibanti, Manotti Lanfredi, Tiripicchio & Bigoli (1969), Braibanti, Manotti Lanfredi, Tiripicchio & Bigoli (1970).

$$t = \frac{\Delta d}{\Delta d}$$

t $(\sigma_1^2 + \sigma_2^2)^{1/2}$.

0(52)

Fig. 2. Coordination polyhedron around Ca²⁺.

 $N \cdots O$ distance is well beyond the accepted values for distances in bonds of this kind (Wallwork, 1962).

The Consiglio Nazionale delle Ricerche is kindly thanked for financial support.

References

BIGOLI, F., BRAIBANTI, A., TIRIPICCHIO, A. & TIRIPICCHIO CAMELLINI, M. (1970). *Chem. Commun.* p. 120.
BRAIBANTI, A., MANOTTI LANFREDI, A. M. & TIRIPICCHIO, A. (1967). *Z. Kristallogr.* 124, 335.
BRAIBANTI, A., MANOTTI LANFREDI, A. M., TIRIPICCHIO, A. & BIGOLI, F. (1969). *Acta Cryst.* B25, 100.

BRAIBANTI, A., MANOTTI LANFREDI, A. M., TIRIPICCHIO, A. & BIGOLI, F. (1970). Acta Cryst. B26, 806.

Fig. 3. Chelate rings, 1 and 2.

Table 7. Analysis of the planarity of the chelate molecules

	Plane	(-3.2671x)	A) Ring 1 $+ 6.2069y$	+0.4153z = 0	0.3177	
		in			01	ut
Atoms	O(1.1)	C(2.1)	N(3.1)	O(5.1)	N(4.1)	Ca
⊿.104 (Å)	+13	+60	+18	+13	- 1856	- 3094
σ.104 (Å)	48	60	60	48	56	
$\sum (\Delta/\sigma)^2$		1.3	24			

(A) The hypothesis of the planarity of atoms 'in' can be accepted with confidence.

	Plane	- 6.2075	(B) Ring $2 - 2.5552v$	2 + 1.8489z =	0.3355	
		i	in	1 2 0 1072	0 0 0 0 0 0	out
Atoms	O(1.2)	C(2.2)	N(3.2)	O(5.2)	N(4.2)	Ca
⊿.104 (Å)	+25	+135	$+40^{-1}$	-36	- 3 0 28	- 8495
σ. 104 (Å)	42	58	58	51	62	
$\sum (\Delta/\sigma)^2$		6.7	5			

(B) The hypothesis of the planarity of atoms 'in' can be accepted with caution: deviation Δ of C(2.2) is possibly significant, but the deviations Δ of atoms 'out' are much greater and highly significant.

Angle between planes (A) and (B): 73.64° .

Interatomic bonds N(3.1)-H(7.1) N(4.1)-H(8.1) N(4.1)-H(9.1)	0·966 Å 0·955 1·005	H(7.1)N(3.1)-C(2.1) H(7.1)N(3.1)-N(4.1) H(8.1)N(4.1)-H(9.1) H(8.1)N(4.1)-N(3.1) H(9.1)N(4.1)-N(3.1) H(8.1)N(4.1)-Ca H(9.1)N(4.1)-Ca	129·1° 107·0 115·1 112·3 108·9 107·3 99·9
N(3.2)-H(7.2) N(4.2)-H(8.2) N(4.2)-H(9.2)	0·943 0·892 1·139	$\begin{array}{l} H(7.2) & - N(3.2) - C(2.2) \\ H(7.2) & - N(3.2) - N(4.2) \\ H(8.2) & - N(4.2) - H(9.2) \\ H(8.2) & - N(4.2) - N(3.2) \\ H(9.2) & - N(4.2) - N(3.2) \\ H(8.2) & - N(4.2) - Ca \\ H(9.2) & - N(4.2) - Ca \end{array}$	121.4 120.1 105.9 109.3 109.1 117.5 101.9
O(6)—H(10) O(6)—H(11)	0·993 0·917	H(10)	132.7
Hydrogen bonds O(6)—O(5.2 ⁱ) O(6)—O(5.1 ^v) N(4.1)-O(5.2 ^{vi})	2·594 (15) Å 2·723 (18) 2·909 (17)	$\begin{array}{c} O(5.2^{i})-O(6)-O(5.1^{v})\\ O(5.2^{i})-H(10)-O(6)\\ O(5.2^{ii})-O(6)-H(10)\\ O(5.1^{v})-H(11)-O(6)\\ O(5.1^{v})-O(6)-H(11)\\ H(10)-O(6)-Ca\\ O(5.2^{i})-O(6)-Ca\\ H(11)-O(6)-Ca\\ O(5.1^{v})-O(6)-Ca\\ N(4.1)-H(8.1)-O(5.2^{vi})\\ H(8.1)-N(4.1)-O(5.2^{vi})\\ \end{array}$	125.8 (3)° 158.6 13.4 167.7 8.2 84.6 97.4 (2) 122.2 124.7 (3) 157.2 15.5

Table 8. Bond distances and angles involving hydrogen atoms

Asymmetric units: see Table 5.

Table 9. Shortest intermolecular contacts

$N(4,1) \cap (6)$	2.030 (20) Å	$N(4,1) = O(6^{iv})$	3.112 (11) Å
N(4.1) = O(0)	2.110(11)	N(3,1) - O(6y)	3.078 (16)
N(4.1) = O(5.1)	3.110(11)	O(5,1) - O(0,1)	3.007 (16)
N(4.2) = O(1.1)	2.947 (13)	$O(3.1) = O(1.2^{-1})$	2.105(11)
$O(1.2) - O(5.1^{111})$	2.924 (17)	$O(1.1) - O(1.2^{-1})$	3.103(11)
$O(1.2) - O(6^1)$	2.939 (14)	O(1.2) - O(1.111)	3.037(10)
O(1.1)–O(6)	3.012 (11)	$O(5.1) - N(3.2^{V11})$	3.250 (21)

Asymmetric units: see Table 5.

- BRAIBANTI, A., TIRIPICCHIO, A., MANOTTI LANFREDI, A. M. & BIGOLI, F. (1968). Z. Kristallogr. 126, 307.
- BRAIBANTI, A., TIRIPICCHIO, A., MANOTTI LANFREDI, A. M. & CAMELLINI, M. (1967). Acta Cryst. 23, 248.
- CHIDAMBARAM, R., SEQUEIRA, A. & SIKKA, S. K. (1964). J. Chem. Phys. 41, 3616.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321.

FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1965). Z. Kristallogr. 122, 259.

- FREEMAN, H. C. (1967). Advanc. Protein Chem. 22, 257.
- HAMILTON, W. C. (1964). Statistics in Physical Science. New York: Ronald Press.
- VAN DER HELM, D. & WILLOUGHBY, T. V. (1969). Acta Cryst. B25, 2317.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.